Sunday 24 December 2017

SFDX and the Metadata API Part 3 - Destructive Changes

SFDX and the Metadata API Part 3 - Destructive Changes

Chuck

Introduction

In Part 1 of this series, I covered how you can use the SFDX command line tool to deploy metadata to a regular (non-scratch) Salesforce org, including checking the status and receiving the results of the deployment in JSON format. In Part 2, how to combine the deploy and check into a node script that shows the progress of the deployment.

Creating metadata is only part of the story when implementing Salesforce or building an application on the platform. Unless you have supernatural prescience, it’s likely you’ll need to remove a component or two as time goes by. While items can be manually deleted, that’s not an approach that scales and you are also likely to get through a lot of developers when they realise their job consists of replicating the same manual change across a bunch of instances!

It’s just another deployment

Destroying components in Salesforce is accomplished in the same way as creating them - via a metadata deployment, but with a couple of key differences.

Empty Package Manifest

The package.xml file for destructive changes is simply an empty variant that only contains the version of the API being targeted:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
    <version>41.0</version>
</Package>

Destructive Changes Manifest

The destructiveChanges.xml file identifies the components to be destroyed - it’s the same format as any other package.xml file, but doesn’t support wildcards so you need to know the name of everything you want to deep six. Continuing the theme in this series of using my Take a Moment blog post as the source of examples, here’s the destructive changes manifest to remove the component:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
    <types>
        <members>TakeAMoment</members>
        <name>AuraDefinitionBundle</name>
    </types>
    <version>40.0</version>
</Package>

Destroy Mode Engaged

For the purposes of this post I’ve created a directory named destructive and placed the two manifest files in there. I can then execute the following command to remove the app from my dev org.

> sfdx force:mdapi:deploy -d destructive -u keirbowden@googlemail.com -w -1

Note that I’ve specified the -w switch with a value of -1, which means the command will poll the Salesforce server until it completes. As this is a deployment it can also be handled by a node script in the same way that I demonstrated in Part 2 of this series. 

The output of the command is as follows:

619 bytes written to /var/folders/tn/q5mzq6n53blbszymdmtqkflc0000gs/T/destructive.zip using 25.393ms
Deploying /var/folders/tn/q5mzq6n53blbszymdmtqkflc0000gs/T/destructive.zip...

=== Status
Status:  Pending
jobid:  0Af80000003zYCfCAM
Component errors:  0
Components deployed:  0
Components total:  0
Tests errors:  0
Tests completed:  0
Tests total:  0
Check only: false


Deployment finished in 2000ms

=== Result
Status:  Succeeded
jobid:  0Af80000003zYCfCAM
Completed:  2017-12-24T17:14:02.000Z
Component errors:  0
Components deployed:  1
Components total:  1
Tests errors:  0
Tests completed:  0
Tests total:  0
Check only: false

and the component is gone from my org. If I’ve deployed it to a bunch of other orgs, I just need to re-run the command with the appropriate -u switch.

Related Posts

 

 

 

Tuesday 19 December 2017

SFDX and the Metadata API Part 2 - Scripting

SFDX and the Metadata API Part 2 - Scripting

Introduction

In Part 1 of this series, I covered how you can use the SFDX command line tool to deploy metadata to a regular (non-scratch) Salesforce org, including checking the status and receiving the results of the deployment in JSON format. In this post I’ll show how the deploy and check can be combined in a node script to allow you to show the progress of the deployment. The examples below are for MacOS - if that isn’t your operating system you may have to do some tweaking, although as I’m not using directory names I don’t think that will be the case. These examples also assume that you are in the directory that you cloned the repository into in Part 1.

Needs Node

You’ll need Node.js installed in order to try out the example - you can download it here. You’ll also need the SFDX CLI, but I’m sure everyone has that from the first post in this series, right?

Node has a built-in module, named child_process, that allows you to execute an application on your local disk.  While most things Node and JavaScript are asynchronous, the authors of child_process have given us synchronous versions too. These block the node event loop until the application has finished executing and then return the output of the application as the result. Perfect for scripting.

Executing SFDX

The function that we are interested in is execFileSync, which takes the name(or path) of the application to execute and an array of parameters. In the previous post, my command to execute the deployment was:

> sfdx force:mdapi:deploy -d src -u keirbowden@googlemail.com

To carry out the same operation via the execFileSync function:

child_process.execFileSync('sfdx',
                           ['force:mdapi:deploy', '-d', 'src',
                            '-u', 'keirbowden@googlemail.com]);

Processing the Results

By default the results of the deploy will be returned in a human-readable text format, but supplying an additional parameter of ‘—json’ turns it into JSON format,  (note this is much redacted output!):

{
  "status": 0,
  "result": {
      ...
    "id": "0Af80000003ynf6CAA",
    "status": "Succeeded",
    "success": true
  }
}

which JavaScript can easily parse into an object - this is the main reason that I script tools like this in node - parsing JSON in bash scripts is way more difficult.

var jsonResult=child_process.execFileSync('sfdx',
                               ['force:mdapi:deploy', '-d', 'src',
                                '-u', 'keirbowden@googlemail.com]);
var result=JSON.parse(jsonResult);
console.log(‘Status = ‘ + result.result.status);

Outputs ‘Status = Succeeded’.

Polling the Deployment

The result from the execution of the deployment contains an id parameter:

    "id": "0Af80000003ynf6CAA"

which can be used to request a deployment report from the org. 

child_process.execFileSync('sfdx’,
                           ['force:mdapi:deploy:report',
                           '-i', result.result.id,
                            '-u', ‘keirbowden@googlemail.com', '--json’]);

the results of which are again returned in JSON format and can be processed easily through JavaScript.

All together now

Based on the above learning, here’s the sample node script that executes a deployment and then polls the org until it has completed, successfully or otherwise:

#!/usr/local/bin/node

var child_process=require('child_process');
var username='keirbowden@googlemail.com';

var deployParams=['force:mdapi:deploy', '-d', 'src',
                  '-u', username, '--json'];

var resultJSON=child_process.execFileSync('sfdx', deployParams);
var result=JSON.parse(resultJSON);
var status=result.result.status; while (-1==(['Succeeded', 'Canceled', 'Failed'].indexOf(status))) { var msg='Deployment ' + status; if ('Queued'!=status) { msg+=' (' + result.result.numberComponentsDeployed + '/' + result.result.numberComponentsTotal + ')' } console.log(msg); var reportParams=['force:mdapi:deploy:report', '-i', result.result.id, '-u', username, '--json']; resultJSON=child_process.execFileSync('sfdx', reportParams); result=JSON.parse(resultJSON); status=result.result.status; } console.log('Deployment ' + result.result.status);

Breaking this up a little, the child_process module is included and the name of my user assigned to a variable as I’ll be using it it in a few places:

var child_process=require('child_process');
var username='keirbowden@googlemail.com';

The deployment is then executed and the results parsed:

var deployParams=['force:mdapi:deploy', '-d', 'src',
                  '-u', username, '--json'];

var resultJSON=child_process.execFileSync('sfdx', deployParams);
var result=JSON.parse(resultJSON);

Then the code enters a loop that continues until the deployment has completed:

var status=result.result.status;
while (-1==(['Succeeded', 'Canceled', 'Failed'].indexOf(status))) {

Next I generate a message to display to the user - the status of the deployment and, if it isn’t queued, the number of components deployed and the total number:

var msg='Deployment ' + status;
if ('Queued'!=status) {
    msg+=' (' + result.result.numberComponentsDeployed + '/' +
                result.result.numberComponentsTotal + ')'
}
console.log(msg);

Then I execute the report on the status of the deployment and assign the results to the existing variable - as far as I’ve been able to tell the results of the deploy and deploy report are the same, but this doesn’t appear to be documented anywhere so may be subject to change:

var reportParams=['force:mdapi:deploy:report', '-i', result.result.id,
                          '-u', username, '--json'];
        resultJSON=child_process.execFileSync('sfdx', reportParams);
        result=JSON.parse(resultJSON);
        status=result.result.status;

and round the loop it goes again.

Executing this script generates the following output:

> node deploy.js
Deployment Queued
Deployment Pending (0/0)
Deployment Pending (0/0)
Deployment Pending (0/0)
Deployment InProgress (0/1)
Deployment Succeeded

Conclusion

This script just scratches the surface of what can be done with the results - for example, if any of the components fail it can raise the alarm in the org or elsewhere. It also polls continuously, which I wouldn’t recommend for a large number of components - I typically sleep for a few seconds in between each request. It also doesn’t do much with the final result aside from writing it to the screen. 

The SFDX force:mdapi:deploy command does have a ‘-w’ option to wait a specified period of time for the deployment to complete, which if set to -1 reports the progress at regular intervals in a very similar way until the deployment completes. This is fine if you are happy to wait until the end before taking any further action, but I like this granularity so that I can take action as soon as something happens. You should use what works for you.

Related Posts

 

Friday 15 December 2017

Santa Force is Coming to Town

Santa Force is Coming to Town

Santa

Introduction

This post comes all the way from Lapland, from the workshop of Santa Force. a long time Salesforce user. This Salesforce instance has received some enhancements to help with the unique problems of this unique non-profit, which we’ll take a closer look at.

Customisations

There are a few additional fields on user, which don’t necessarily make a lot of sense when viewed in isolation:

Screen Shot 2017 12 15 at 09 59 47

However, they are vital for a formula field :

 

Screen Shot 2017 12 15 at 10 01 33

 

So as you can see, you’d better watch out, not pout and not cry. This might seem an odd requirement, but the help text tells you why:

 

Screen Shot 2017 12 15 at 10 02 06

 

 

On to Santa Force now, he’s making a list view. The elves created one a few days ago, but there’s some issues with it - the name doesn’t look right and there’s a few fields missing.

 

Screen Shot 2017 12 15 at 10 37 42

 

Santa Force clones the list view, renames it and adds the required fields:

 

Screen Shot 2017 12 15 at 10 36 55

 

This is much better - he’s making a list view, he’s checked it twice and can now see who has been naughty or nice.

 

There’s also a process builder that works off another custom field on the contact record - a checkbox field labelled Asleep?

 

Screen Shot 2017 12 15 at 10 41 39

 

So Santa Force knows if you are sleeping, and knows if you are awake, because it is posted to his chatter feed:

Screen Shot 2017 12 15 at 10 17 35

 

 

Finally, there’s one more field on contact - Goodness.  Santa Force can look at this field and determine if you’ve been good or bad - there’s also some useful help text that will guide a contact’s behaviour if they view this though the community.

 

Screen Shot 2017 12 15 at 10 19 03

 

Why?

The key question is what is all this information being gathered for? Checking the calendar, we can see that it’s for an event scheduled for 24th December:

 

Screen Shot 2017 12 15 at 10 22 16

 

As you can see, Santa Force is Coming to Town!

Happy Christmas everyone and thanks for reading the Bob Buzzard Blog.

 

Tuesday 12 December 2017

SFDX and the Metadata API

SFDX and the Metadata API

Introduction

SFDX became Generally Available in the Winter 18 Release of Salesforce and I was ready for it. However, my use case was our BrightMedia appcelerator which is mostly targeted at sandboxes and production orgs, where scratch orgs wouldn’t really help that much. The good news is that the SFDX CLI has support for metadata deploy/retrieve operations via the mdapi commands in the force topic.

What you need

In order to deploy metadata you need the directory structure and package.xml manifest - if you’ve used the Force.com migration tool (ant) or the Force CLI, this should be familiar. For the purposes of this blog I’m using the GITHUB repository from my Take a Moment blog post, which has the following structure:

src/
src/package.xml
src/aura/
src/aura/TakeAMoment
src/aura/TakeAMoment/TakeAMoment.cmp
src/aura/TakeAMoment/TakeAMoment.cmp-meta.xml
src/aura/TakeAMoment/TakeAMoment.css
src/aura/TakeAMoment/TakeAMomentController.js
src/aura/TakeAMoment/TakeAMomentHelper.js
src/aura/TakeAMoment/TakeAMomentRenderer.js

What you do

The first thing I do is clone the repo to my local filesystem and navigate to the directory created:

 > git clone https://github.com/keirbowden/TakeAMoment.git
Cloning into 'TakeAMoment'...
remote: Counting objects: 20, done.
remote: Total 20 (delta 0), reused 0 (delta 0), pack-reused 20
Unpacking objects: 100% (20/20), done.
> cd TakeAMoment

I then set this up as an SFDX project:

> sfdx force:project:create -n .
create sfdx-project.json
conflict README.md
force README.md
create config/project-scratch-def.json

Next I login to one of my dev orgs:

> sfdx force:auth:web:login
Successfully authorized keirbowden@googlemail.com with org ID …..
You may now close the browser

(For the purposes of this blog my login is ‘keirbowden@googlemail.com’ - substitute your username in the commands below)

Everything is now set up and I can deploy to my dev org:

> sfdx force:mdapi:deploy -d src -u keirbowden@googlemail.com
2884 bytes written to /var/folders/tn/q5mzq6n53blbszymdmtqkflc0000gs/T/src.zip using 36.913msDeploying /var/folders/tn/q5mzq6n53blbszymdmtqkflc0000gs/T/src.zip...
=== StatusStatus:  Queuedjobid:  0Af80000003ynf6CAA
The deploy request did not complete within the specified wait time [0 minutes].To check the status of this deployment, run "sfdx force:mdapi:deploy:report"

Sometimes the deployment completes immediately, but most of the time it takes a bit longer and I have to query the status via the command that the SFDX CLI helpfully gives me in the output:

> sfdx force:mdapi:deploy:report
=== Result
Status: Succeeded
jobid: 0Af80000003ynf6CAA
Completed: 2017-12-12T16:28:39.000Z
Component errors: 0
Components checked: 1
Components total: 1
Tests errors: 0
Tests completed: 0
Tests total: 0
Check only: true

And that’s it - my deployment is done!

Why would you do this?

That’s a really good question. For me, the following reasons are good enough:

  1. The SFDX CLI, unlike the Force Migration Tool, uses oauth to authorise operations, so I don’t need to specify the password in plaintext. It also means that the rest of my team don’t need to learn ANT.
  2. The SFDX CLI, unlike the Force CLI, allows me to fire the deployment off and query the status later, plus it gives me a lot of information in the report.

It’s also clear to me that SFDX is the future, so aligning myself with the SFDX CLI seems a sensible move.

It also allows me to get the status of the deployment as JSON:

> sfdx force:mdapi:deploy:report --json

which gives me a ton of information:

{
  "status": 0,
  "result": {
    "checkOnly": false,
    "completedDate": "2017-12-12T16:28:39.000Z",
    "createdBy": "00580000001ju2C",
    "createdByName": "Keir Bowden",
    "createdDate": "2017-12-12T16:28:09.000Z",
    "details": {
      "componentSuccesses": [
        {
          "changed": "true",
          "componentType": "AuraDefinitionBundle",
          "created": "true",
          "createdDate": "2017-12-12T16:28:36.000Z",
          "deleted": "false",
          "fileName": "src\/aura\/TakeAMoment",
          "fullName": "TakeAMoment",
          "id": "0Ab80000000PEGWCA4",
          "success": "true"
        },
        {
          "changed": "true",
          "componentType": "",
          "created": "false",
          "createdDate": "2017-12-12T16:28:38.000Z",
          "deleted": "false",
          "fileName": "src\/package.xml",
          "fullName": "package.xml",
          "success": "true"
        }
      ],
      "runTestResult": {
        "numFailures": "0",
        "numTestsRun": "0",
        "totalTime": "0.0"
      }
    },
    "done": true,
    "id": "0Af80000003ynf6CAA",
    "ignoreWarnings": false,
    "lastModifiedDate": "2017-12-12T16:28:39.000Z",
    "numberComponentErrors": 0,
    "numberComponentsDeployed": 1,
    "numberComponentsTotal": 1,
    "numberTestErrors": 0,
    "numberTestsCompleted": 0,
    "numberTestsTotal": 0,
    "rollbackOnError": true,
    "runTestsEnabled": "false",
    "startDate": "2017-12-12T16:28:29.000Z",
    "status": "Succeeded",
    "success": true
  }
}

Having the results in JSON also means that I can easily process it in JavaScript, which I’ll cover in my next post.

Related Posts